Adeno Associated Virus 9-Based Gene Therapy Delivers a Functional Monocarboxylate Transporter 8, Improving Thyroid Hormone Availability to the Brain of Mct8-Deficient Mice

基于腺相关病毒 9 的基因疗法可提供功能性单羧酸转运蛋白 8,从而提高 Mct8 缺陷小鼠大脑的甲状腺激素利用率

阅读:6
作者:Hideyuki Iwayama, Xiao-Hui Liao, Lyndsey Braun, Soledad Bárez-López, Brian Kaspar, Roy E Weiss, Alexandra M Dumitrescu, Ana Guadaño-Ferraz, Samuel Refetoff

Background

MCT8 gene mutations produce thyroid hormone (TH) deficiency in the brain, causing severe neuropsychomotor abnormalities not correctable by treatment with TH. This proof-of-concept study examined whether transfer of human MCT8 (hMCT8) cDNA using adeno-associated virus 9 (AAV9) could correct the brain defects of Mct8 knockout mice (Mct8KO).

Conclusions

These results indicate that MCT8 delivery to brain barriers by IV but not ICV injection is crucial for its proper function. MCT8 has no constitutive activity but acts through an increase in T3 entering the brain tissue. Increasing MCT8 expression in brain cell membranes, including neurons, is insufficient to produce an effect without an increase in brain T3 content. The correct hMCT8 isoform along with an optimized delivery method are critical for an effective gene therapy to provide functional MCT8 in the brain of patients with MCT8 mutations.

Methods

AAV9 vectors delivering long and/or short hMCT8 protein isoforms or an empty vector were injected intravenously (IV) and/or intracerebroventricularly (ICV) into postnatal day 1 Mct8KO and wild type (Wt) mice. Triiodothyronine (T3) was given daily for four days before postnatal day 28, at which time brains were collected after perfusion to assess increase in T3 content and effect on the T3-responsive transcription factor, Hairless.

Results

Increased pup mortality was observed after IV injection of the AAV9-long hMCT8 isoform, but not after injection of AAV9-short hMCT8 isoform. Compared to IV, ICV delivery produced more hMCT8 mRNA and protein relative to the viral dose, which was present in various brain regions and localized to the cell membranes. Despite production of abundant hMCT8 mRNA and protein with ICV delivery, only IV delivered AAV9-hMCT8 targeted the choroid plexus and significantly increased brain T3 content and expression of Hairless. Conclusions: These results indicate that MCT8 delivery to brain barriers by IV but not ICV injection is crucial for its proper function. MCT8 has no constitutive activity but acts through an increase in T3 entering the brain tissue. Increasing MCT8 expression in brain cell membranes, including neurons, is insufficient to produce an effect without an increase in brain T3 content. The correct hMCT8 isoform along with an optimized delivery method are critical for an effective gene therapy to provide functional MCT8 in the brain of patients with MCT8 mutations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。