Dysregulated Gln-Glu-α-ketoglutarate axis impairs maternal decidualization and increases the risk of recurrent spontaneous miscarriage

谷氨酰胺-谷氨酰胺-α-酮戊二酸轴失调会损害母体蜕膜化并增加复发性流产的风险

阅读:5
作者:Linchen Tang, Xiang-Hong Xu, Sha Xu, Zeying Liu, Qizhi He, Wenxuan Li, Jiaxue Sun, Wen Shuai, Jingwen Mao, Jian-Yuan Zhao, Liping Jin

Abstract

Recurrent spontaneous miscarriage (RSM) affects 1%-2% of fertile women worldwide and poses a risk of future pregnancy complications. Increasing evidence has indicated that defective endometrial stromal decidualization is a potential cause of RSM. Here, we perform liquid chromatography with mass spectrometry (LC-MS)-based metabolite profiling in human endometrial stromal cells (ESCs) and differentiated ESCs (DESCs) and find that accumulated α-ketoglutarate (αKG) derived from activated glutaminolysis contributes to maternal decidualization. Contrarily, ESCs obtained from patients with RSM show glutaminolysis blockade and aberrant decidualization. We further find that enhanced Gln-Glu-αKG flux decreases histone methylation and supports ATP production during decidualization. In vivo, feeding mice a Glu-free diet leads to a reduction of αKG, impaired decidualization, and an increase of fetal loss rate. Isotopic tracing approaches demonstrate Gln-dependent oxidative metabolism as a prevalent direction during decidualization. Our results demonstrate an essential prerequisite of Gln-Glu-αKG flux to regulate maternal decidualization, suggesting αKG supplementation as a putative strategy to rectify deficient decidualization in patients with RSM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。