Variation of 46 Innate Immune Genes Evaluated for their Contribution in Pneumococcal Meningitis Susceptibility and Outcome

评估 46 种先天免疫基因变异对肺炎球菌性脑膜炎易感性和结果的影响

阅读:6
作者:Bart Ferwerda, Mercedes Valls Serón, Aldo Jongejan, Aeilko H Zwinderman, Madelijn Geldhoff, Arie van der Ende, Frank Baas, Matthijs C Brouwer, Diederik van de Beek

Abstract

Pneumococcal meningitis is the most common and severe form of bacterial meningitis. Early recognition of the pathogen and subsequent innate immune response play a vital role in disease susceptibility and outcome. Genetic variations in innate immune genes can alter the immune response and influence susceptibility and outcome of meningitis disease. Here we conducted a sequencing study of coding regions from 46 innate immune genes in 435 pneumococcal meningitis patients and 416 controls, to determine the role of genetic variation on pneumococcal meningitis susceptibility and disease outcome. Strongest signals for susceptibility were rs56078309 CXCL1 (p=4.8e-04) and rs2008521 in CARD8 (p=6.1e-04). For meningitis outcome the rs2067085 in NOD2 (p=5.1e-04) and rs4251552 of IRAK4 were the strongest associations with unfavorable outcome (p=6.7e-04). Haplotype analysis showed a haplotype block, determined by IRAK4 rs4251552, significantly associated with unfavorable outcome (p=0.004). Cytokine measurements from cerebrospinal fluid showed that with the IRAK4 rs4251552 G risk allele had higher levels of IL-6 compared to individuals with A/A genotype (p=0.04). We show that genetic variation within exons and flanking regions of 46 innate immunity genes does not yield significant association with pneumococcal meningitis. The strongest identified signal IRAK4 does imply a potential role of genetic variation in pneumococcal meningitis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。