Dynamic surveillance of tamoxifen-resistance in ER-positive breast cancer by CAIX-targeted ultrasound imaging

CAIX靶向超声成像动态监测ER阳性乳腺癌他莫昔芬耐药性

阅读:6
作者:Ying Li, Xiaoyu Chen, ZhiWei Zhou, Qing Li, Kenneth D Westover, Meng Wang, Junjun Liu, Sheng Zhang, Jin Zhang, Bo Xu, Xi Wei

Abstract

Tamoxifen-based hormone therapy is central for the treatment of estrogen receptor positive (ER+ ) breast cancer. However, the acquired tamoxifen resistance, typically co-exists with hypoxia, remains a major challenge. We aimed to develop a non-invasive, targeted ultrasound imaging approach to dynamically monitory of tamoxifen resistance. After we assessed acquired tamoxifen resistance in 235 breast cancer patients and a list of breast cancer cell lines, we developed poly(lactic-co-glycolic acid)-poly(ethylene glycol)-carbonic anhydrase IX mono antibody nanobubbles (PLGA-PEG-mAbCAIX NBs) to detect hypoxic breast cancer cells upon exposure of tamoxifen in nude mice. We demonstrate that carbonic anhydrase IX (CAIX) expression is associated with breast cancer local recurrence and tamoxifen resistance both in clinical and cellular models. We find that CAIX overexpression increases tamoxifen tolerance in MCF-7 cells and predicts early tamoxifen resistance along with an oscillating pattern in intracellular ATP level in vitro. PLGA-PEG-mAbCAIX NBs are able to dynamically detect tamoxifen-induced hypoxia and tamoxifen resistance in vivo. CAIX-conjugated NBs with noninvasive ultrasound imaging is powerful for dynamically monitoring hypoxic microenvironment in ER+ breast cancer with tamoxifen resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。