Expression and Prognostic Role of PANK1 in Glioma

PANK1 在胶质瘤中的表达和预后作用

阅读:6
作者:Zhiming Zhao, Xu Xu, Shijing Ma, Li Li

Background

Malignant gliomas are the most common type of primary malignant brain tumors. Pantothenate kinase 1 (PANK1) mRNA is highly expressed in several metabolic processes, implying that PANK1 plays a potential role in metabolic programming in cancers. However, the role of PANK1 in glioma has not been fully explored.

Conclusion

PANK1 expression is downregulated in glioma tissues and is a novel prognostic biomarker in glioma patients.

Methods

Public datasets (The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), Gravendeel and Rembrandt) and validation cohort were used to explore the expression of PANK1 in glioma tissues. Kaplan-Meier and Cox regression analyses were used to explore the relationship between PANK1 and prognosis in glioma. Cell proliferation and invasion were determined using Cell Counting Kit-8 (CCK8) and transwell invasion in vitro assays.

Results

Analysis using the four public datasets and the validation cohort showed that PANK1 expression was significantly downregulated in glioma tissues compared with non-tumor tissues (P<0.01). PANK1 expression was negatively correlated with World Health Organization (WHO) grade, 1p/19q non-codeletion and isocitric dehydrogenase 1/2 (IDH1/2) wildtype. Furthermore, high expression of PANK1 was correlated with significantly better prognosis of glioma patients compared to patients with low expression of PANK1 (all P<0.01 in the four datasets). Besides, both lower-grade glioma (LGG) and glioblastoma multiform (GBM) patients with high expression of PANK1 had a significantly better prognosis than those with low expression of PANK1 in TCGA, Gravendeel and Rembrandt datasets (all P <0.01). Multivariate Cox regression analysis revealed that low PANK1 expression was an independent risk factor associated with a worse prognosis of glioma patients. Moreover, overexpression of PANK1 significantly inhibited the proliferation and invasion of U87 and U251 cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。