Integrating Network Pharmacology and Experimental Validation to Explore the Pharmacological Mechanism of Astragaloside IV in Treating Bleomycin-Induced Pulmonary Fibrosis

结合网络药理学与实验验证探讨黄芪甲苷治疗博来霉素诱发肺纤维化的药理机制

阅读:5
作者:Su Yuan, Biao Zuo, Si-Cong Zhou, Meng Wang, Kai-Yue Tan, Zhi-Wei Chen, Wen-Fu Cao

Conclusion

Our research found that Astragaloside IV could alleviate bleomycin-induced PF by preventing cellular senescence and EMT.

Methods

We first determined the in vivo anti-pulmonary fibrosis effect of Astragaloside IV by HE, MASSON staining, and lung coefficients, then used network pharmacology to predict the signaling pathways and molecularly docked key pathway proteins, and finally validated the

Purpose

Our study aims to reveal the pharmacological mechanism of Astragaloside IV in the treatment of pulmonary fibrosis(PF) through network pharmacology and experimental validation.

Results

In in vivo experiments, we found that Astragaloside IV improved body weight (P < 0.05), increased lung coefficients (P < 0.05), and reduced lung inflammation and collagen deposition in mice with pulmonary fibrosis. The network pharmacology results showed that Astragaloside IV had 104 cross-targets with idiopathic pulmonary fibrosis, and the results of KEGG enrichment analysis indicated that cellular senescence could be an important pathway for Astragaloside IV in the treatment of pulmonary fibrosis. Astragaloside IV also bound well to senescence-associated proteins, according to molecular docking results. The results of both in vivo and in vitro experiments showed that Astragaloside IV significantly inhibited senescence protein markers such as P53, P21, and P16 and delayed cellular senescence (P < 0.05). In in vivo experiments, we also found that Astragaloside IV reduced the production of SASPs (P < 0.05), and in in vitro experiments, Astragaloside IV also reduced the production of ROS. In addition, by detecting epithelial-mesenchymal transition(EMT)-related marker protein expression, we also found that Astragaloside IV significantly inhibited the development of EMT in both in vivo and in vitro experiments (P < 0.05).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。