Developmental maturation of the colonic uptake process of the microbiota-generated thiamin pyrophosphate

微生物产生的硫胺素焦磷酸在结肠吸收过程的发育成熟

阅读:6
作者:Subrata Sabui, Jose M Romero, Hamid M Said

Abstract

The water-soluble vitamin B1 is essential for normal human health and physiology. In its main biologically active form, i.e., thiamin pyrophosphate (TPP), the vitamin plays many critical roles in cell metabolism; thus, its deficiency leads to a variety of adverse effects. Humans/mammals obtain vitamin B1 from two exogenous sources: diet and gut microbiota. Considerable amount of the microbiota-generated vitamin B1 exists in the form of TPP, and colonocytes can efficiently absorb this TPP via a high-affinity and specific carrier-mediated mechanism that involves the recently cloned colonic TPP transporter (cTPPT; product of SLC44A4 gene). There is nothing currently known about colonic uptake of TPP during early stages of life and whether the process undergoes developmental regulation. We addressed this issue using the mouse as animal model. Our results showed that colonic uptake of TPP undergoes developmental upregulation as the animal moves from the suckling period to weanling and adulthood. This upregulation in uptake was found to be associated with a parallel induction in level of expression of the cTPPT protein, mRNA, and heterogeneous nuclear RNA, suggesting possible involvement of transcriptional mechanism(s). We also found a parallel upregulation in the level of expression of the two nuclear factors that drive activity of the SLC44A4 promoter (i.e., CREB-1 and Elf-3) with maturation. These results demonstrate, for the first time, to our knowledge, that colonic TPP uptake process and cTPPT expression are developmentally upregulated and that this upregulation is likely driven via transcriptional mechanism(s).NEW & NOTEWORTHY The colonic carrier-mediated uptake process of the microbiota-generated and phosphorylated form of vitamin B1, i.e., thiamin pyrophosphate, undergoes ontogenic changes that parallel the development of the gut microbiota (and their ability to generate vitamins) during early stages of life.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。