Modulation of musculoskeletal hyperalgesia by brown adipose tissue activity in mice

棕色脂肪组织活性对小鼠肌肉骨骼痛觉过敏的调节

阅读:5
作者:Elizabeth M Goudie-DeAngelis, Ramy E Abdelhamid, Myra G Nunez, Casey L Kissel, Katalin J Kovács, Philip S Portoghese, Alice A Larson

Abstract

Cold exposure and a variety of types of mild stress increase pain in patients with painful disorders such as fibromyalgia syndrome. Acutely, stress induces thermogenesis by increasing sympathetic activation of beta-3 (β3) adrenergic receptors in brown adipose tissue. Chronic stress leads to the hypertrophy of brown adipose, a phenomenon termed adaptive thermogenesis. Based on the innervation of skeletal muscle by collaterals of nerves projecting to brown adipose, we theorized an association between brown adipose tissue activity and musculoskeletal hyperalgesia and tested this hypothesis in mice. Exposure to a cold swim or injection of BRL37344 (β3 adrenergic agonist) each enhanced musculoskeletal hyperalgesia, as indicated by morphine-sensitive decreases in grip force responses, whereas SR59230A (β3 adrenergic antagonist) attenuated swim-induced hyperalgesia. Chemical ablation of interscapular brown adipose, using Rose Bengal, attenuated the development of hyperalgesia in response to either swim stress or BRL37344. In addition, elimination of the gene expressing uncoupling protein-1 (UCP1), the enzyme responsible for thermogenesis, prevented musculoskeletal hyperalgesia in response to either a swim or BRL37344, as documented in UCP1-knockout (UCP1-KO) mice compared with wild-type controls. Together, these data provide a convergence of evidence suggesting that activation of brown adipose contributes to stress-induced musculoskeletal hyperalgesia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。