FOXD3‑AS1/miR‑128‑3p/LIMK1 axis regulates cervical cancer progression

FOXD3‑AS1/miR‑128‑3p/LIMK1 轴调控宫颈癌进展

阅读:5
作者:Xiufang Yang, Huilan Du, Wenhui Bian, Qingxue Li, Hairu Sun

Abstract

Long non‑coding RNA forkhead box D3 antisense RNA 1 (FOXD3‑AS1) functions as an oncogenic regulator in several types of cancer, including breast cancer, glioma and cervical cancer. However, the effects and mechanisms underlying FOXD3‑AS1 in cervical cancer (CC) are not completely understood. The present study aimed to investigate the biological functions and potential molecular mechanisms underlying FOXD3‑AS1 in CC progression. Reverse transcription‑quantitative PCR was performed to detect FOXD3‑AS1, microRNA (miR)‑128‑3p and LIM domain kinase 1 (LIMK1) expression levels in CC tissues and cells. Immunohistochemical staining and western blotting were conducted to assess LIMK1 protein expression levels in CC tissues and cells, respectively. Cell Counting Kit‑8 and BrdU assays were used to determine the role of FOXD3‑AS1 in regulating cell proliferation. CC cell migration and invasion were assessed by performing Transwell assays. Dual‑luciferase reporter assays were conducted to verify the binding between miR‑128‑3p and FOXD3‑AS1. FOXD3‑AS1 expression was significantly increased in CC tissues and cell lines compared with adjacent healthy tissues and normal cervical epithelial cells, respectively. High FOXD3‑AS1 expression was significantly associated with poor differentiation of tumor tissues, increased tumor size and positive lymph node metastasis. FOXD3‑AS1 overexpression significantly increased CC cell proliferation, migration and invasion compared with the negative control (NC) group, whereas FOXD3‑AS1 knockdown resulted in the opposite effects compared with the small interfering RNA‑NC group. Moreover, the results demonstrated that FOXD3‑AS1 targeted and negatively regulated miR‑128‑3p, which indirectly upregulated LIMK1 expression. Therefore, the present study demonstrated that FOXD3‑AS1 upregulated LIMK1 expression via competitively sponging miR‑128‑3p in CC cells, promoting CC progression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。