In Vivo Expansion of Endogenous Regulatory T Cell Populations Induces Long-Term Suppression of Contact Hypersensitivity

体内内源性调节性 T 细胞群的扩增可诱导对接触性超敏反应的长期抑制

阅读:7
作者:Asmaa El Beidaq, Christopher W M Link, Katharina Hofmann, Britta Frehse, Karin Hartmann, Katja Bieber, Stefan F Martin, Ralf J Ludwig, Rudolf A Manz

Abstract

Contact hypersensitivity (CHS) of murine skin serves as a model of allergic contact dermatitis. Hapten-specific CD8 T cells and neutrophils represent the major effector cells driving this inflammatory reaction whereas Foxp3(+) regulatory T cells (Tregs) control the severity of inflammation. However, whether in vivo expansion of endogenous Tregs can downregulate CHS-mediated inflammation remains to be elucidated. In this study, we addressed this issue by using injection of an IL-2/anti-IL-2 mAb JES6-1 complex (IL-2/JES6-1) as a means of Treg induction in 2,4,6-trinitrochlorobenzene-induced CHS. IL-2/JES6-1 injection before or after hapten sensitization led to a considerable reduction of skin inflammation, even when rechallenged up to 3 wk after the last treatment. Conversely, Treg depletion re-established the CHS response in IL-2/JES6-1-treated mice. IL-2/JES6-1 injection resulted in increased frequencies of natural and peripheral Tregs in spleen and draining lymph nodes (LNs), elevated IL-10 and TGF-β production by CD4 T cells, reduced CD86 expression by dendritic cells, and led to lower numbers of hapten-specific IFN-γ-producing CD8 T effector cells in LNs. Neutrophil and CD8 T cell infiltration was reduced in inflamed ear tissue, whereas CTLA-4(+)Foxp3(+) Treg frequencies were augmented. Adoptive transfer of LN cells of sensitized mice into recipients treated with IL-2/JES6-1 showed impaired CHS. Our results show that in vivo Treg expansion results in a prolonged CHS suppression, a sustained reduction of hapten-specific CD8 T cells, and a decrease in effector cell influx in inflamed tissue.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。