Modification of TRPV4 activity by acetaminophen

对乙酰氨基酚对 TRPV4 活性的改变

阅读:6
作者:Fumio Nakagawa, Sen Higashi, Eika Ando, Tomoko Ohsumi, Seiji Watanabe, Hiroshi Takeuchi

Abstract

N-Acetyl-p-aminophenol (APAP/acetaminophen) is a widely used analgesic/antipyretic with weaker inhibitory effects on cyclooxygenase compared to those of non-steroidal anti-inflammatory drugs. The effect of APAP is mediated by its metabolites, N-arachidonoyl-phenolamine and N-acetyl-p-benzoquinone imine, which activate transient receptor potential (TRP) channels, including TRP vanilloid 1 (TRPV1) and TRP ankyrin 1 (TRPA1) or cannabinoid receptor type 1. However, the exact molecular mechanism underlying the cellular actions of APAP remains unclear. Recently, we observed that APAP promotes cell migration through TRPV4; in this study, we examined the effect of APAP on Ca2+-channel activity of TRPV4. In the rat cell line PC12 expressing TRPV4, GSK1016790A (GSK), a TRPV4 agonist, stimulated an increase in [Ca2+]i; these effects were abrogated by HC-067047 treatment. This GSK-induced Ca2+ entry through TRPV4 was inhibited by APAP in a dose-dependent manner, whereas APAP alone did not affect [Ca2+]i. The specificity of the effect of APAP on TRPV4 was further confirmed using HeLa cells, which lack endogenous TRPV4 but stably express exogenous TRPV4 (HeLa-mTRPV4). GSK-induced [Ca2+]i elevation was only observed in HeLa-mTRPV4 cells compared to that in the control HeLa cells, indicating the specific action of GSK on TRPV4. APAP dose-dependently suppressed this GSK-induced Ca2+ entry in HeLa-mTRPV4. However, it is unlikely that the metabolites of APAP were involved in these effects as the reaction in this study was rapid. The results suggest that APAP suppresses the newly identified target TRPV4 without being metabolized and exerts antipyretic/analgesic and/or other effects on TRPV4-related phenomena in the body. The effect of APAP on TRPV4 was opposite to that on TRPV1 or TRPA1, as the latter is activated by APAP.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。