RXLR effector diversity in Phytophthora infestans isolates determines recognition by potato resistance proteins; the case study AVR1 and R1

致病疫霉菌分离物中 RXLR 效应子多样性决定了马铃薯抗性蛋白的识别;案例研究 AVR1 和 R1

阅读:4
作者:Y Du, R Weide, Z Zhao, P Msimuko, F Govers, K Bouwmeester

Abstract

Late blight disease caused by the plant pathogenic oomycete pathogen Phytophthora infestans is one of the most limiting factors in potato production. P. infestans is able to overcome introgressed late blight resistance by adaptation of effector genes. AVR1 is an RXLR effector that triggers immune responses when recognized by the potato resistance protein R1. P. infestans isolates avirulent on R1 plants were found to have AVR1 variants that are recognized by R1. Virulent isolates though, lack AVR1 but do contain a close homologue of AVR1, named A-L, of which all variants escape recognition by R1. Co-expression of AVR1 and R1 in Nicotiana benthamiana results in a hypersensitive response (HR). In contrast, HR is not activated when A-L is co-expressed with R1. AVR1 and A-L are highly similar in structure. They share two W motifs and one Y motif in the C-terminal part but differ in the T-region, a 38 amino acid extension at the carboxyl-terminal tail of AVR1 lacking in A-L. To pinpoint what determines R1-mediated recognition of AVR1 we tested elicitor activity of AVR1 and A-L chimeric and deletion constructs by co-expression with R1. The T-region is important as it enables R1-mediated recognition of A-L, not only when fused to A-L but also via trans-complementation. Yet, AVR1 lacking the T-region is still active as an elicitor of HR, but this activity is lost when certain motifs are swapped with A-L. These data show that A-L circumvents R1 recognition not only because it lacks the T-region, but also because of differences in the conserved C-terminal effector motifs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。