Advanced glycation end products inhibit the osteogenic differentiation potential of adipose-derived stem cells in mice through autophagy

晚期糖基化终产物通过自噬抑制小鼠脂肪干细胞成骨分化潜能

阅读:5
作者:Ting Fu, Qiang Zhu, Fangzhi Lou, Shuyu Cai, Shuanglin Peng, Jingang Xiao

Background

Diabetes mellitus (DM) microenvironment will accelerate the accumulation of Advanced glycation end products (AGEs), adipose-derived stem cells (ASCs) have poor osteogenesis in the DM microenvironment. Studies suggest autophagy plays a vital role in osteogenesis, but the mechanism of the altered osteogenic potential of ASCs has not been elucidated. Bone tissue engineering by ASCs is widely used in the treatment of bone defects with diabetic osteoporosis (DOP). Therefore, it is meaningful to explore the effect of AGEs on the osteogenic differentiation potential of ASCs and its potential mechanism for the repair of bone defects in DOP. Materials and

Conclusions

AGEs reduce the osteogenic differentiation potential of ASCs through autophagy, and may provide a reference for the treatment of bone defects with diabetes osteoporosis.

Methods

ASCs in C57BL/6 mice were isolated, cultured, then treated with AGEs, subsequently, cell viability and proliferation were detected through Cell Counting Kit 8 assay. 3-Methyladenine (3-MA), an autophagic inhibitor used to inhibit autophagic levels. Rapamycin (Rapa), an autophagy activator that further activated autophagy levels by inhibiting mTOR.The osteogenesis and autophagy changes of ASCs were analyzed by flow cytometry, qPCR, western blot, immunofluorescence, alkaline phosphatase (ALP) and alizarin red staining.

Results

AGEs reduced the autophagy level and osteogenic potential of ASCs. After 3-MA reduced autophagy, the osteogenic potential of ASCs also decreased. AGEs co-treatment with 3-MA, the levels of osteogenesis and autophagy reduced more significantly. When autophagy was activated by Rapa, it was found that it could rescue the reduced osteogenic potential of AGEs. Conclusions: AGEs reduce the osteogenic differentiation potential of ASCs through autophagy, and may provide a reference for the treatment of bone defects with diabetes osteoporosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。