TMEM9-v-ATPase Activates Wnt/β-Catenin Signaling Via APC Lysosomal Degradation for Liver Regeneration and Tumorigenesis

TMEM9-v-ATPase通过APC溶酶体降解激活Wnt /β-Catenin信号传导,促进肝脏再生和肿瘤发生

阅读:5
作者:Youn-Sang Jung, Sabrina A Stratton, Sung Ho Lee, Moon-Jong Kim, Sohee Jun, Jie Zhang, Biyun Zheng, Christopher L Cervantes, Jong-Ho Cha, Michelle C Barton, Jae-Il Park

Aims

How Wnt signaling is orchestrated in liver regeneration and tumorigenesis remains elusive. Recently, we identified transmembrane protein 9 (TMEM9) as a Wnt signaling amplifier. Approach and

Approach and results

TMEM9 facilitates v-ATPase assembly for vesicular acidification and lysosomal protein degradation. TMEM9 is highly expressed in regenerating liver and hepatocellular carcinoma (HCC) cells. TMEM9 expression is enriched in the hepatocytes around the central vein and acutely induced by injury. In mice, Tmem9 knockout impairs hepatic regeneration with aberrantly increased adenomatosis polyposis coli (Apc) and reduced Wnt signaling. Mechanistically, TMEM9 down-regulates APC through lysosomal protein degradation through v-ATPase. In HCC, TMEM9 is overexpressed and necessary to maintain β-catenin hyperactivation. TMEM9-up-regulated APC binds to and inhibits nuclear translocation of β-catenin, independent of HCC-associated β-catenin mutations. Pharmacological blockade of TMEM9-v-ATPase or lysosomal degradation suppresses Wnt/β-catenin through APC stabilization and β-catenin cytosolic retention. Conclusions: Our results reveal that TMEM9 hyperactivates Wnt signaling for liver regeneration and tumorigenesis through lysosomal degradation of APC.

Background and aims

How Wnt signaling is orchestrated in liver regeneration and tumorigenesis remains elusive. Recently, we identified transmembrane protein 9 (TMEM9) as a Wnt signaling amplifier. Approach and

Conclusions

Our results reveal that TMEM9 hyperactivates Wnt signaling for liver regeneration and tumorigenesis through lysosomal degradation of APC.

Results

TMEM9 facilitates v-ATPase assembly for vesicular acidification and lysosomal protein degradation. TMEM9 is highly expressed in regenerating liver and hepatocellular carcinoma (HCC) cells. TMEM9 expression is enriched in the hepatocytes around the central vein and acutely induced by injury. In mice, Tmem9 knockout impairs hepatic regeneration with aberrantly increased adenomatosis polyposis coli (Apc) and reduced Wnt signaling. Mechanistically, TMEM9 down-regulates APC through lysosomal protein degradation through v-ATPase. In HCC, TMEM9 is overexpressed and necessary to maintain β-catenin hyperactivation. TMEM9-up-regulated APC binds to and inhibits nuclear translocation of β-catenin, independent of HCC-associated β-catenin mutations. Pharmacological blockade of TMEM9-v-ATPase or lysosomal degradation suppresses Wnt/β-catenin through APC stabilization and β-catenin cytosolic retention. Conclusions: Our results reveal that TMEM9 hyperactivates Wnt signaling for liver regeneration and tumorigenesis through lysosomal degradation of APC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。