RNA demethylation by FTO stabilizes the FOXJ1 mRNA for proper motile ciliogenesis

FTO 进行的 RNA 去甲基化可稳定 FOXJ1 mRNA,以实现适当的运动纤毛发生

阅读:6
作者:Hyunjoon Kim, Young-Suk Lee, Seok-Min Kim, Soohyun Jang, Hyunji Choi, Jae-Won Lee, Tae-Don Kim, V Narry Kim

Abstract

Adenosine N6-methylation (m6A) is one of the most pervasive mRNA modifications, and yet the physiological significance of m6A removal (demethylation) remains elusive. Here, we report that the m6A demethylase FTO functions as a conserved regulator of motile ciliogenesis. Mechanistically, FTO demethylates and thereby stabilizes the mRNA that encodes the master ciliary transcription factor FOXJ1. Depletion of Fto in Xenopus laevis embryos caused widespread motile cilia defects, and Foxj1 was identified as one of the major phenocritical targets. In primary human airway epithelium, FTO depletion also led to FOXJ1 mRNA destabilization and a severe loss of ciliated cells with an increase of neighboring goblet cells. Consistently, Fto knockout mice showed strong asthma-like phenotypes upon allergen challenge, a result owing to defective ciliated cells in the airway epithelium. Altogether, our study reveals a conserved role of the FTO-FOXJ1 axis in embryonic and homeostatic motile ciliogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。