Characterization of oxidative stress-induced cgahp, a gene coding for alkyl hydroperoxide reductase, from industrial importance Corynebacterium glutamicum

工业上重要的谷氨酸棒状杆菌中氧化应激诱导的烷基氢过氧化物还原酶基因 cgahp 的表征

阅读:5
作者:Meiru Si #, Mengdie Hu #, Mingfei Yang, Zhaoxin Peng, Donghan Li, Yuying Zhao

Abstract

Alkyl hydroperoxide reductase (Ahp), comprised of four different subunits AhpC, AhpD, AhpE, and AhpF, is a thiol-based antioxidative enzyme with the ability to protect bacteria against oxidative stress. Functionally, AhpC and AhpE considered as peroxidases directly detoxify peroxides, while AhpD and AhpF as oxidoreductases restore oxidized peroxidases to their reduced form. Corynebacterium glutamicum ncgl0877 encodes a putative Ahp with a unique Cys-Pro-Phe-Cys (C-P-G-C) active-site motif, similar with those of the thiol-disulfide oxidoreductases such as thioredoxin (Trx), mycoredoxin-1 (Mrx1) and AhpD. However, its physiological and biochemical functions remain unknown in C. glutamicum. Here, we report that NCgl0877, designated CgAhp, is involved in the protection against organic peroxide (OP) stress. The cgahp-deleted strain is notably more sensitive to OP stress. The cgahp expression is controlled by a MarR-type transcriptional repressor OasR (organic peroxide- and antibiotic-sensing regulator). The physiological role of CgAhp in resistance to OP stresses is corroborated by its induced expression under stresses. Although CgAhp has a weak peroxidase activity toward OP, it mainly supports the OP-scavenging activity of the thiol-dependent peroxidase preferentially linked to the dihydrolipoamide dehydrogenase (Lpd)/dihydrolipoamide succinyltransferase (SucB)/NADH system. The C-P-G-C motif of CgAhp is essential to maintain the reductase activity. In conclusion, our study identifies CgAhp, behaving like AhpD, as a key disulfide oxidoreductase involved in the oxidative stress tolerance and the functional electron donor for peroxidase.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。