Hepatic molecular responses to Bifidobacterium pseudocatenulatum CECT 7765 in a mouse model of diet-induced obesity

饮食诱导肥胖小鼠模型对假链双歧杆菌 CECT 7765 的肝脏分子反应

阅读:8
作者:A Moya-Pérez, M Romo-Vaquero, F Tomás-Barberán, Y Sanz, M-T García-Conesa

Aims

Bifidobacterium pseudocatenulatum CECT 7765 moderates body weight gain and metabolic parameters in high-fat diet-(HFD)-fed mice but, the mechanisms of action are not yet understood. To further understand the effects of this bacterial strain, we have investigated the molecular changes in the liver of mice fed a HFD and supplemented with the bacteria.

Background and aims

Bifidobacterium pseudocatenulatum CECT 7765 moderates body weight gain and metabolic parameters in high-fat diet-(HFD)-fed mice but, the mechanisms of action are not yet understood. To further understand the effects of this bacterial strain, we have investigated the molecular changes in the liver of mice fed a HFD and supplemented with the bacteria.

Conclusion

B. pseudocatenulatum CECT 7765 modified the expression of key regulators of fatty acid and cholesterol metabolism and transport, lipid levels and glucose levels in the liver which supports the beneficial metabolic effects of this bacterial strain.

Results

Gene expression and protein levels were measured in the liver of C57BL/6 male mice following sub-chronic consumption of a HFD and B. pseudocatenulatum CECT 7765. Our results show that the consumption of this bacterial strain modulated the expression of key genes involved in the regulation of energy metabolism and transport of lipids that were affected by the HFD.B. pseudocatenulatum CECT 7765 significantly counteracted the effects caused by the HFD on the fatty acid transporter CD36, the transcription regulator of lipid biosynthesis EGR1 and the regulators of glucose metabolism, IGFBP2 and PPP1R3B, both at the mRNA and protein levels. The bacterial strain slightly induced the transcript levels of PNPLA2, a lipase that hydrolyses triglycerides in lipid droplets. In the standard diet (SD)-fed mice, the administration of B. pseudocatenulatum CECT 7765 donwregulated the expression of INSIG1 and HMGCR critically involved in the regulation of cholesterol levels.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。