Gallic Acid Enhances the Efficacy of BCR::ABL1 Tyrosine Kinase Inhibitors in Chronic Myeloid Leukemia through Inhibition of Mitochondrial Respiration and Modulation of Oncogenic Signaling Pathways

没食子酸通过抑制线粒体呼吸和调节致癌信号通路增强 BCR::ABL1 酪氨酸激酶抑制剂对慢性粒细胞白血病的疗效

阅读:4
作者:Wei Xiang, Colin Sng, Yi-Hui Lam, Ze-Hui Kok, Yeh-Ching Linn, Soek-Ying Neo, Yin-Yin Siew, Deepika Singh, Hwee-Ling Koh, Charles Chuah

Abstract

While BCR::ABL1 tyrosine kinase inhibitors have transformed the treatment paradigm for chronic myeloid leukemia (CML), disease progression and treatment resistance due to BCR::ABL1-dependent and BCR::ABL1-independent mechanisms remain a therapeutic challenge. Natural compounds derived from plants have significantly contributed to cancer pharmacotherapy. This study investigated the efficacy of an active component of Leea indica, a local medicinal plant, in CML. Using high-performance liquid chromatography-electrospray ionization-mass spectrometry, a chemical constituent from L. indica extract was isolated and identified as gallic acid. Commercially obtained gallic acid was used as a chemical standard. Gallic acid from L. indica inhibited proliferation and induced apoptosis in CML cell lines, as did the chemical standard. Furthermore, gallic acid induced apoptosis and decreased the colony formation of primary CML CD34+ cells. The combination of isolated gallic acid or its chemical standard with BCR::ABL1 tyrosine kinase inhibitors resulted in a significantly greater inhibition of colony formation and cell growth compared to a single drug alone. Mechanistically, CML cells treated with gallic acid exhibited the disruption of multiple oncogenic pathways including ERK/MAPK, FLT3 and JAK/STAT, as well as impaired mitochondrial respiration. Rescue studies showed that gallic acid is significantly less effective in inducing apoptosis in mitochondrial respiration-deficient ρ0 cells compared to wildtype cells, suggesting that the action of gallic acid is largely through the inhibition of mitochondrial respiration. Our findings highlight the therapeutic potential of L. indica in CML and suggest that gallic acid may be a promising lead chemical constituent for further development for CML treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。