Stimulation of Eryptosis by Afatinib

阿法替尼刺激红细胞凋亡

阅读:9
作者:Abdulla Al Mamun Bhuyan, Florian Lang

Aims

The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor afatinib is primarily utilized for the treatment of non-small cell lung carcinoma. The drug is at least partially effective by triggering suicidal tumor cell death. Side effects of afatinib treatment include anemia. At least in theory, afatinib induced anemia could be secondary to stimulation of suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Signaling potentially stimulating eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), induction of oxidative stress, and increase of ceramide abundance. The present study explored, whether afatinib induces eryptosis and, if so, whether its effect involves Ca2+ entry, oxidative stress, and/or ceramide.

Background/aims

The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor afatinib is primarily utilized for the treatment of non-small cell lung carcinoma. The drug is at least partially effective by triggering suicidal tumor cell death. Side effects of afatinib treatment include anemia. At least in theory, afatinib induced anemia could be secondary to stimulation of suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Signaling potentially stimulating eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), induction of oxidative stress, and increase of ceramide abundance. The present study explored, whether afatinib induces eryptosis and, if so, whether its effect involves Ca2+ entry, oxidative stress, and/or ceramide.

Conclusions

Afatinib triggers phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part due to Ca2+ entry, oxidative stress, and ceramide.

Methods

Flow cytometry was employed to quantify phosphatidylserine exposure at the cell surface from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, reactive oxygen species (ROS) abundance from DCFDA dependent fluorescence, and ceramide abundance utilizing specific antibodies.

Results

A 48 hours exposure of human erythrocytes to afatinib (≥ 4 µg/ml) significantly increased the percentage of annexin-V-binding cells and significantly decreased forward scatter. Afatinib significantly increased Fluo3-fluorescence, DCFDA fluorescence and ceramide abundance. The effect of afatinib on annexin-V-binding and forward scatter was significantly blunted by removal of extracellular Ca2+. Conclusions: Afatinib triggers phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part due to Ca2+ entry, oxidative stress, and ceramide.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。