Cytoplasmic-predominant Pten increases microglial activation and synaptic pruning in a murine model with autism-like phenotype

细胞质为主的 Pten 在具有自闭症样表型的小鼠模型中增加小胶质细胞活化和突触修剪

阅读:6
作者:Nicholas Sarn, Ritika Jaini, Stetson Thacker, Hyunpil Lee, Ranjan Dutta, Charis Eng

Abstract

Germline mutations in PTEN account for ~10% of cases of autism spectrum disorder (ASD) with coincident macrocephaly. To explore the importance of nuclear PTEN in the development of ASD and macrocephaly, we previously generated a mouse model with predominantly cytoplasmic localization of Pten (Ptenm3m4/m3m4).Cytoplasmic predominant Pten localization results in a phenotype of extreme macrocephaly and autistic-like traits. Transcriptomic analysis of the Ptenm3m4/m3m4 cortex found upregulated gene pathways related to myeloid cell activation, myeloid cell migration, and phagocytosis. These transcriptomic findings were used to direct in vitro assays on Pten wild-type and Ptenm3m4/m3m4 microglia. We found increased Iba1 and C1q expression with enhanced phagocytic capacity in Ptenm3m4/m3m4 microglia, indicating microglial activation. Moreover, through a series of neuron-microglia co-culture experiments, we found Ptenm3m4/m3m4 microglia are more efficient at synaptic pruning compared with wild-type controls. In addition, we found evidence for neuron-microglia cross-talk, where Ptenm3m4/m3m4 neurons elicit enhanced pruning from innately activated microglia. Subsequent in vivo studies validated our in vitro findings. We observed a concurrent decline in the expression of Pten and synaptic markers in the Ptenm3m4/m3m4 cortex. At ~3 weeks of age, with a 50% drop in Pten expression compared with wild-type levels, we observed enhanced activation of microglia in the Ptenm3m4/m3m4 brain. Collectively, our data provide evidence that dysregulated Pten in microglia has an etiological role in microglial activation, phagocytosis, and synaptic pruning, creating avenues for future studies on the importance of PTEN in maintaining microglia homeostasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。