Grain-sized moxibustion at Zusanli (ST36) promotes hepatic autophagy in rats with hyperlipidemia by regulating the ULK1 and TFEB expression through the AMPK/mTOR signaling pathway

麦粒灸足三里通过AMPK/mTOR信号通路调控ULK1和TFEB表达促进高脂血症大鼠肝脏自噬

阅读:4
作者:Qian Xu, Huanxi Wu, Haibin Zhu, Chengxuan Lu, Jiangjia Tao, Ziqiu Zhou, Jianbin Zhang

Conclusion

Grain-sized moxibustion at ST36 acupoints could regulate the blood lipid level of SD rats with hyperlipidemia, increase the expression level of ULK1 and TFEB by activating the AMPK/mTOR signaling pathway in liver tissues, and initiate the transcription of autophagy genes such as LC3.

Methods

Thirty male Sprague-Dawley (SD) rats were fed a high-fat diet for eight weeks to induce hyperlipidemia. Hyperlipidemic rats were divided into the HFD group, HFD + Statin group, HFD + CC + Moxi group, and grain-sized moxibustion intervention group (HFD + Moxi group). The control (Blank) group consisted of normal rats without any intervention. Grain-sized moxibustion and drug interventions were initiated eight weeks after high-fat diet induction and continued for ten weeks. Serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL), as well as hepatic triglyceride (TG), were measured after treatment. Hepatic steatosis and the expression of LC3I, LC3II, p62, p-AMPK, AMPK, p-mTOR, mTOR, ULK1, p-ULK1, and TFEB in the liver were analyzed.

Objective

Grain-sized moxibustion is an effective treatment for hyperlipidemia, but how it regulates dyslipidemia and liver lipid deposits still needs to be fully understood. This study explored the molecular biological mechanism of grain-sized moxibustion to regulate hepatic autophagy in hyperlipidemic rats by affecting ULK1 and TFEB through the AMPK/mTOR signaling pathway.

Results

Compared with the HFD group, grain-sized moxibustion improved hyperlipidemia and hepatocyte steatosis, increased the LC3, p-AMPK, p-ULK1, and nuclear TFEB expression in the liver, but decreased the p62 and p-mTOR expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。