Cardiovascular effects of Helichrysum ceres S Moore [Asteraceae] ethanolic leaf extract in some experimental animal paradigms

蜡菊 S Moore [菊科] 乙醇叶提取物在某些实验动物范例中对心血管的影响

阅读:4
作者:Cephas T Musabayane, Dave R Kamadyaapa, Mavuto Gondwe, Kogi Moodley, John A O Ojewole

Abstract

The aim of this study was to examine some in vivo and in vitro cardiovascular effects of Helichrysum ceres leaf ethanolic extract (HCE) in experimental animal paradigms. The acute effects of HCE on blood pressure were studied in anaesthetised normotensive male Wistar rats challenged with intravenous hypotonic saline infusion after a 3.5-hour equilibration for four hours of one-hour control, 1.5-hour treatment and 1.5-hour recovery periods. HCE was added to the infusate during the treatment period. Sub-chronic hypotensive effects of HCE were examined in weanling Dahl saltsensitive (DSS) genetically hypertensive rats, which progressively develop hypertension with age, treated with HCE (80 mg/kg) every third consecutive day for seven weeks. Isolated atrial muscle strips, portal veins and descending thoracic aortic rings of healthy normotensive Wistar rats were used to investigate the vascular effects of HCE. Acute HCE administration caused a significant (p < 0.05) fall in blood pressure in the normotensive anaesthetised Wistar rats. DSS hypertensive rats treated with HCE displayed low arterial blood pressure and heart rate values from weeks five to seven. HCE produced concentrationdependent negative inotropic and chronotropic effects on rat isolated electrically driven left, and spontaneously beating right atrial muscle preparations, respectively. HCE also evoked concentration-dependent relaxation responses of endothelium-intact aortic rings and portal veins isolated from healthy normotensive Wistar rats. The vasorelaxant effects of HCE in intact aortic rings were significantly reduced, but not completely abolished by adding endothelial- derived factor (EDRF) inhibitor, L-NAME, suggesting that the vasorelaxant effect of the extract is mediated via EDRF-dependent and independent mechanisms. The results of the study suggest that the hypotensive action of HCE is elicited, in part, directly by decreasing myocardial contractile performance and total peripheral vascular resistance due to its negative inotropic and chronotropic effects on rat isolated atrial muscle strips; and vasorelaxant effects on isolated vascular smooth muscles. The observed cardiovascular effects of HCE partly support the basis for its use in the management of high blood pressure in folkloric medicine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。