The Stop Codon after the nsp3 Gene of Ross River Virus (RRV) Is Not Essential for Virus Replication in Three Cell Lines Tested, but RRV Replication Is Attenuated in HEK 293T Cells

罗斯河病毒 (RRV) nsp3 基因后的终止密码子对于所测试的三种细胞系中的病毒复制不是必需的,但 RRV 复制在 HEK 293T 细胞中减弱

阅读:11
作者:Christin Schmidt, Julia Gerbeth, Christine von Rhein, Florian D Hastert, Barbara S Schnierle

Abstract

A recombinant Ross River virus (RRV) that contains the fluorescent protein mCherry fused to the non-structural protein 3 (nsP3) was constructed, which allowed real-time imaging of viral replication. RRV-mCherry contained either the natural opal stop codon after the nsP3 gene or was constructed without a stop codon. The mCherry fusion protein did not interfere with the viral life cycle and deletion of the stop codon did not change the replication capacity of RRV-mCherry. Comparison of RRV-mCherry and chikungunya virus-mCherry infections, however, showed a cell type-dependent delay in RRV-mCherry replication in HEK 293T cells. This delay was not caused by differences in cell entry, but rather by an impeded nsP expression caused by the RRV inhibitor ZAP (zinc finger CCCH-Type, antiviral 1). The data indicate that viral replication of alphaviruses is cell-type dependent, and might be unique for each alphavirus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。