Hypoxia augments TRPM3-mediated calcium influx in vagal sensory neurons

缺氧增强迷走神经感觉神经元中 TRPM3 介导的钙内流

阅读:11
作者:Katherine R Langen, Heather A Dantzler, Procopio Gama de Barcellos-Filho, David D Kline

Abstract

Transient receptor potential melastatin 3 (TRPM3) channels contribute to nodose afferent and brainstem nucleus tractus solitarii (nTS) activity. Exposure to short, sustained hypoxia (SH) and chronic intermittent hypoxia (CIH) enhances nTS activity, although the mechanisms are unknown. We hypothesized TRPM3 may contribute to increased neuronal activity in nTS-projecting nodose ganglia viscerosensory neurons, and its influence is elevated following hypoxia. Rats were exposed to either room air (normoxia), 24-h of 10 % O2 (SH), or CIH (episodic 6 % O2 for 10d). A subset of neurons from normoxic rats were exposed to in vitro incubation for 24-h in 21 % or 1 % O2. Intracellular Ca2+ of dissociated neurons was monitored via Fura-2 imaging. Ca2+ levels increased upon TRPM3 activation via Pregnenolone sulfate (Preg) or CIM0216. Preg responses were eliminated by the TRPM3 antagonist ononetin, confirming agonist specificity. Removal of extracellular Ca2+ also eliminated Preg response, further suggesting Ca2+ influx via membrane-bound channels. In neurons isolated from SH-exposed rats, the TRPM3 elevation of Ca2+ was greater than in normoxic-exposed rats. The SH increase was reversed following a subsequent normoxic exposure. RNAScope demonstrated TRPM3 mRNA was greater after SH than in Norm ganglia. Incubating dissociated cultures from normoxic rats in 1 % O2 (24-h) did not alter the Preg Ca2+ responses compared to their normoxic controls. In contrast to in vivo SH, 10d CIH did not alter TRPM3 elevation of Ca2+. Altogether, these results demonstrate a hypoxia-specific increase in TRPM3-mediated calcium influx.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。