Nanoscale co-organization and coactivation of AMPAR, NMDAR, and mGluR at excitatory synapses

AMPAR、NMDAR 和 mGluR 在兴奋性突触处的纳米级共组织和共激活

阅读:5
作者:Julia Goncalves, Tomas M Bartol, Côme Camus, Florian Levet, Ana Paula Menegolla, Terrence J Sejnowski, Jean-Baptiste Sibarita, Michel Vivaudou, Daniel Choquet, Eric Hosy

Abstract

The nanoscale co-organization of neurotransmitter receptors facing presynaptic release sites is a fundamental determinant of their coactivation and of synaptic physiology. At excitatory synapses, how endogenous AMPARs, NMDARs, and mGluRs are co-organized inside the synapse and their respective activation during glutamate release are still unclear. Combining single-molecule superresolution microscopy, electrophysiology, and modeling, we determined the average quantity of each glutamate receptor type, their nanoscale organization, and their respective activation. We observed that NMDARs form a unique cluster mainly at the center of the PSD, while AMPARs segregate in clusters surrounding the NMDARs. mGluR5 presents a different organization and is homogenously dispersed at the synaptic surface. From these results, we build a model predicting the synaptic transmission properties of a unitary synapse, allowing better understanding of synaptic physiology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。