Inhibition of MALT1 reduces ferroptosis in rat hearts following ischemia/reperfusion via enhancing the Nrf2/SLC7A11 pathway

抑制 MALT1 可通过增强 Nrf2/SLC7A11 通路减少大鼠心脏缺血/再灌注后的铁死亡

阅读:13
作者:Ya-Qian Jiang, Xiao-Yan Yang, Dan-Qing Duan, Yi-Yue Zhang, Nian-Sheng Li, Li-Jing Tang, Jun Peng, Xiu-Ju Luo

Abstract

The dysregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and/or solute carrier family 7 member 11 (SLC7A11) is believed to contribute to ferroptosis in the hearts suffered ischemia/reperfusion (I/R), but the mechanisms behind the dysregulation of them are not fully elucidated. Mucosa associated lymphoid tissue lymphoma translocation gene 1 (MALT1) can function as a paracaspase to cleave specified substrates and it is predicted to interact with Nrf2. This study aims to explore whether targeting MALT1 can reduce I/R-induced ferroptosis via enhancing the Nrf2/SLC7A11 pathway. The SD rat hearts were subjected to 1h-ischemia plus 3h-reperfusion to establish the I/R injury model, which showed myocardial injuries (increase in infarct size and creatine kinase release) and up-regulation of MALT1 while downregulation of Nrf2 and SLC7A11 concomitant with the increased ferroptosis, reflecting by an increase in glutathione peroxidase 4 (GPX4) level while decreases in the levels of acyl-CoA synthetase long chain family member 4 (ACSL4), total iron, Fe2+ and lipid peroxidation (LPO); these phenomena were reversed in the presence of MI-2, a specific inhibitor of MALT1. Consistently, similar results were achieved in the cultured cardiomyocytes subjected to 8h-hypoxia plus 12h-reoxygenation. Furthermore, micafungin, an antifungal drug, could also exert beneficial effect on mitigating myocardial I/R injury via inhibition of MALT1. Based on these observations, we conclud that inhibition of MALT1 can reduce I/R-induced myocardial ferroptosis through enhancing the Nrf2/SLC7A11 pathway; and MALT1 may be used as a potential target to seek novel or existing drugs (such as micafungin) for treating myocardial infarction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。