Cryptotanshinone Protects against PCOS-Induced Damage of Ovarian Tissue via Regulating Oxidative Stress, Mitochondrial Membrane Potential, Inflammation, and Apoptosis via Regulating Ferroptosis

隐丹参酮通过调节氧化应激、线粒体膜电位、炎症和细胞凋亡(通过调节铁凋亡)来预防 PCOS 引起的卵巢组织损伤

阅读:5
作者:Honglin Liu, Jiani Xie, Limin Fan, Yue Xia, Xia Peng, Jianhua Zhou, Xiaorong Ni

Abstract

Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women of childbearing age. Cryptotanshinone (CRY) has been shown to be effective in reversing reproductive disorders, but whether it can be used in the treatment of polycystic ovary syndrome remains unclear. We aimed to explore whether the mechanism of cryptotanshinone (CRY) in the treatment of polycystic ovary syndrome (PCOS) can be driven via regulating ferroptosis. A rat model of PCOS was established by daily injection of human chorionic gonadotropin and insulin for 22 days. An in vitro model of ischemia-reperfusion (IR) of granulosa cells was established. The in vitro and rat models of PCOS were subjected to different treatments including ferroptosis activators and inhibitors, CRY, and MAPK inhibitor. Oxidative stress was evaluated by measuring the activities of SOD, MDA, and GSH-PX. Total body weight and ovarian weight, as well as the levels of LH and the LH to FSH ratio, significantly increased in rats with PCOS, compared with controls. The expression of Bax was increased in PCOS tissues while PGC1α, NFR1, GPX4, catalase p-ERK, and Bcl-2 were all downregulated. Ferroptosis activator, erastin, had effects similar to those of PCOS while the contrary was found with CRY and ferroptosis inhibitor treatment groups. In vitro, CRY inhibited oxidative stress, MMP, and NF-κB and activated MAPK/ERK signaling by regulating ferroptosis. Overall, this study indicated that CRY protects against PCOS-induced damage of the ovarian tissue, via regulating oxidative stress, MMP, inflammation, and apoptosis via regulating ferroptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。