Olfactory Ensheathing Cell Ameliorate Neuroinflammation Following Spinal Cord Injury Through Upregulating REV-ERBα in Microglia

嗅鞘细胞通过上调小胶质细胞中的 REV-ERBα 改善脊髓损伤后的神经炎症

阅读:5
作者:Lijian Zhang, Luxuan Wang, Yanli Tan, Chunhui Li, Chuan Fang

Abstract

Circadian dysregulation involved in the pathophysiology of spinal cord injury (SCI). Modulation of circadian rhythms hold promise for the SCI treatment. Here, we aim to investigated the mechanism of olfactory ensheathing cells (OEC) in alleviating neuroinflammation via modulating clock gene expression in microglia. In this study, SCI rats were randomly divided into OEC group and vehicle group. At 1 day after the surgery, OECs were intravenously transplanted into OEC group SCI rat, while the rats in vehicle group received culture medium. After 7 days post of OEC transplantation, tissues were collected from the brain (prefrontal cortex, hypothalamus, spinal cord) for PCR, western blotting and immunohistochemistry (IHC) assay at zeitgeber time (ZT) 6, ZT 12, ZT 18, and ZT 24. The roles of OEC in modulating REV-ERBα in microglia were studied by experimental inhibition of gene expression and the co-culture experiment. In the vehicle group, IHC showed a significant increase of Iba-1 expression in the cerebral white matter and spinal cord compared with control group (P < 0.0001 for all comparisons). The expression of Iba-1 was significantly decreased (P < 0.0001 for all comparisons). In the OEC group, the expression of PER 1, PER 2, CLOCK, and REV-ERBα was in a rhythmical manner in both spinal cord and brain regions. SCI disrupted their typical rhythms. And OECs transplantation could modulate those dysregulations by upregulating REV-ERBα. In vitro study showed that OECs couldn't reduce the activation of REV-ERBα inhibited microglia. The intravenous transplantation of OECs can mediate cerebral and spinal microglia activation through upregulation REV-ERBα after SCI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。