Single nucleus multi-omics identifies human cortical cell regulatory genome diversity

单核多组学揭示人类皮层细胞调控基因组多样性

阅读:1
作者:Chongyuan Luo ,Hanqing Liu ,Fangming Xie ,Ethan J Armand ,Kimberly Siletti ,Trygve E Bakken ,Rongxin Fang ,Wayne I Doyle ,Tim Stuart ,Rebecca D Hodge ,Lijuan Hu ,Bang-An Wang ,Zhuzhu Zhang ,Sebastian Preissl ,Dong-Sung Lee ,Jingtian Zhou ,Sheng-Yong Niu ,Rosa Castanon ,Anna Bartlett ,Angeline Rivkin ,Xinxin Wang ,Jacinta Lucero ,Joseph R Nery ,David A Davis ,Deborah C Mash ,Rahul Satija ,Jesse R Dixon ,Sten Linnarsson ,Ed Lein ,M Margarita Behrens ,Bing Ren ,Eran A Mukamel ,Joseph R Ecker

Abstract

Single-cell technologies measure unique cellular signatures but are typically limited to a single modality. Computational approaches allow the fusion of diverse single-cell data types, but their efficacy is difficult to validate in the absence of authentic multi-omic measurements. To comprehensively assess the molecular phenotypes of single cells, we devised single-nucleus methylcytosine, chromatin accessibility, and transcriptome sequencing (snmCAT-seq) and applied it to postmortem human frontal cortex tissue. We developed a cross-validation approach using multi-modal information to validate fine-grained cell types and assessed the effectiveness of computational data fusion methods. Correlation analysis in individual cells revealed distinct relations between methylation and gene expression. Our integrative approach enabled joint analyses of the methylome, transcriptome, chromatin accessibility, and conformation for 63 human cortical cell types. We reconstructed regulatory lineages for cortical cell populations and found specific enrichment of genetic risk for neuropsychiatric traits, enabling the prediction of cell types that are associated with diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。