Gut microbiome of mealworms (Tenebrio molitor Larvae) show similar responses to polystyrene and corn straw diets

黄粉虫(Tenebrio molitor 幼虫)的肠道微生物组对聚苯乙烯和玉米秸秆饮食表现出相似的反应

阅读:11
作者:Tursunay Mamtimin, Huawen Han, Aman Khan, Pengya Feng, Qing Zhang, Xiaobiao Ma, Yitian Fang, Pu Liu, Saurabh Kulshrestha, Toshiro Shigaki, Xiangkai Li

Background

Some insects can degrade both natural and synthetic plastic polymers, their host and gut microbes play crucial roles in this process. However, there is still a scientific gap in understanding how the insect adapted to the polystyrene (PS) diet from natural feed. In this study, we analyzed diet consumption, gut microbiota responses, and metabolic pathways of Tenebrio molitor larvae exposed to PS and corn straw (CS).

Conclusions

The high similarity of gut microbiomes adapted to biodegradation of PS and CS indicated the plastics-degrading ability of the T. molitor larvae originated through an ancient mechanism that degrades the natural lignocellulose. Video Abstract.

Results

T. molitor larvae were incubated under controlled conditions (25 ± 1 °C, 75 ± 5% humidity) for 30 days by using PS foam with weight-, number-, and size-average molecular weight (Mw, Mn, and Mz) of 120.0, 73.2, and 150.7 kDa as a diet, respectively. The larvae exhibited lower PS consumption (32.5%) than CS (52.0%), and these diets had no adverse effects on their survival. The gut microbiota structures, metabolic pathways, and enzymatic profiles of PS- and CS-fed larvae showed similar responses. The gut microbiota of larvae analysis indicated Serratia sp., Staphylococcus sp., and Rhodococcus sp. were associated with both PS and CS diets. Metatranscriptomic analysis revealed that xenobiotics, aromatic compounds, and fatty acid degradation pathways were enriched in PS- and CS-fed groups; laccase-like multicopper oxidases, cytochrome P450, monooxygenase, superoxidase, and dehydrogenase were involved in lignin and PS degradation. Furthermore, the upregulated gene lac640 in both PS- and CS-fed groups was overexpressed in E. coli and exhibited PS and lignin degradation ability. Conclusions: The high similarity of gut microbiomes adapted to biodegradation of PS and CS indicated the plastics-degrading ability of the T. molitor larvae originated through an ancient mechanism that degrades the natural lignocellulose. Video Abstract.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。