Specnuezhenide ameliorates ultraviolet-induced skin photoaging in mice by regulating the Sirtuin 3/8-Oxoguanine DNA glycosylase signal

Specnuezhenide 通过调节 Sirtuin 3/8-Oxoguanine DNA 糖基化酶信号改善小鼠紫外线诱导的皮肤光老化

阅读:7
作者:Nan Tang, Ying-Yun Ren, Hao-Tian Wu, Xi-Ting Lv, Xiao-Ting Liu, Qi-Lin Li, Guo-En Wang, Yan-Hua Wu

Conclusion

Specnuezhenide protected against ultraviolet-induced skin photoaging in mice via a probable activation of SIRT3/OGG1 signal.

Methods

Mice were employed to treat with ultraviolet to induce skin photoaging, then administrated 10 and 20 mg/kg of specnuezhenide. Histological analysis, protein expression, network pharmacology, and autodock analysis were conducted.

Purpose

Ultraviolet-induced skin photoaging was involved in DNA oxidative damage. Specnuezhenide, one of the secoiridoids extracted from Ligustri Lucidi Fructus, possesses antioxidant and anti-inflammatory effects. Whether specnuezhenide ameliorates skin photoaging remains unclear. This study aimed to investigate the effect of specnuezhenide on skin photoaging induced by ultraviolet and explore the underlying mechanism.

Results

Specnuezhenide ameliorated ultraviolet-induced skin photoaging in mice via the increase in collagen contents, and decrease in epidermal thickness, malondialdehyde content, and β-galactosidase expression in the skin. Specnuezhenide reduced cutaneous apoptosis and inflammation in mice with skin photoaging. In addition, network pharmacology data indicated that specnuezhenide possessed potential targets on the NOD-like receptor signaling pathway. Validation experiment found that specnuezhenide inhibited the expression of NOD-like receptor family pyrin domain-containing 3, gasdermin D-C1, and Caspase 1. Furthermore, the expression of 8-Oxoguanine DNA glycosylase (OGG1), sirtuin 3 (SIRT3), and superoxide dismutase 2 was increased in specnuezhenide-treated mice with photoaging.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。