Protective effect of cistanoside A on dopaminergic neurons in Parkinson's disease via mitophagy

肉苁蓉苷A通过线粒体自噬对帕金森病多巴胺能神经元的保护作用

阅读:7
作者:Chengcheng Xu, Yao Wu, Lili Tang, Yan Liang, Yang Zhao

Abstract

One of the main pathological features of Parkinson's disease (PD) is the loss of dopaminergic neurons in the substantia nigra compacta (SNc). Cistanoside A (CA) has a strong neuroprotective effect in PD, but the exact mechanism is unclear. In the present study, the MPTP-stimulated mouse model of PD and MPP+ -treated PD model in the MES23.5 neuronal cell model of PD were used to investigate the neuroprotective effects of CA on PD and its potential mechanism. The in vivo experiment results indicated that CA improved the motor function in mice and increased the number of tyrosine hydroxylase positive cells in SNc. In vitro experiments showed that CA reduced the MPP+ -induced decrease in neurons and mitochondrial membrane potential and promoted the activation of autophagosomes. Furthermore, we found that CA promoted the recruitment of PINK1 and Parkin aggregation to impair mitochondrial membranes and inhibited mitochondrial damage via LC3- and p62-mediated autophagy. In conclusion, CA protects against MPTP-induced neurotoxicity in vivo and MPP+ -induced neurotoxicity in vitro, possibly by promoting the PINK1/Parkin/p62 pathway to accelerate the degradation of damaged mitochondria thereby reducing oxidative stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。