The effect of mesoporous bioglass on osteogenesis and adipogenesis of osteoporotic BMSCs

介孔生物玻璃对骨质疏松BMSCs成骨和脂肪形成的影响

阅读:5
作者:Tao Wu, Ning Cheng, Chun Xu, Wei Sun, Chengzhong Yu, Bin Shi

Abstract

This study evaluated the effect of mesoporous bioglass (MBG) dissolution on the differentiation of bone marrow mesenchymal stem cells (BMSCs) derived from either sham control or ovariectomized (OVX) rats. MBG was fabricated by evaporation-induced self-assembly method. Cell proliferation was tested by Cell Counting Kit-8 assay, and cytoskeletal morphology was observed by fluorescence microscopy. Osteogenic differentiation was evaluated by alkaline phosphatase (ALP) staining and activity, Alizarin Red staining, while adipogenic differentiation was assessed by Oil Red-O staining. Quantitative real-time PCR and Western blot analysis were taken to evaluate the expression of runt-related transcription factor 2 (Runx2) and proliferator-activated receptor-γ (PPARγ). We found that MBG dissolution (0, 25, 50, 100, 200 µg/mL) was nontoxic to BMSCs growth. Sham and OVX BMSCs exhibited the highest ALP activity in 50 µg/mL of MBG osteogenic dissolution, except that sham BMSCs in 100 µg/mL showed the highest ALP activity on day 14. Runx2 was significantly upregulated after 100 µg/mL of MBG stimulation in sham and OVX BMSCs for 7 and 14 days, except that 25 µg/mL showed highest upregulation effect on OVX BMSCs at day 7. PPARγ was downregulated after MBG stimulation. The protein level of Runx2 from the sham BMSCs group was significantly upregulated after lower doses (25 and 50 µg/mL) of MBG stimulation, whereas PPARγ was downregulated in the sham and OVX BMSCs group. Thus, both the osteogenic and adipogenic abilities of BMSCs were damaged under OVX condition. Moreover, lower concentration of MBG dissolution can promote osteogenesis but inhibit adipogenesis of the sham and OVX BMSCs. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3004-3014, 2016.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。