Crystalline silica-induced macrophage pyroptosis interacting with mitophagy contributes to pulmonary fibrosis via modulating mitochondria homeostasis

结晶二氧化硅诱导的巨噬细胞焦亡与线粒体自噬相互作用,通过调节线粒体稳态导致肺纤维化

阅读:7
作者:Yungeng Wei, Yichuan You, Jiarui Zhang, Jiaqi Ban, Hui Min, Chao Li, Jie Chen

Abstract

Environmental exposure to crystalline silica (CS) can lead to silicosis. Alveolar macrophages (AMs) play a crucial role in the pathogenesis of silicosis. Previously, we demonstrated that enhancing AMs mitophagy exerted protective effects on silicosis with a restrained inflammatory response. However, the exact molecular mechanisms are elusive. Pyroptosis and mitophagy are two different biological processes that determine cell fate. Exploring whether there were interactions or balances between these two processes in AMs would provide new insight into treating silicosis. Here we reported that crystalline silica induced pyroptosis in silicotic lungs and AMs with apparent mitochondria injury. Notably, we identified a reciprocal inhibitory effect between mitophagy and pyroptosis cascades in AMs. By enhancing or diminishing mitophagy, we demonstrated that PINK1-mediated mitophagy helped clear damaged mitochondria to negatively regulate CS-induced pyroptosis. While constraining pyroptosis cascades by NLRP3, Caspase1, and GSDMD inhibitors, respectively, displayed enhanced PINK1-dependent mitophagy with lessened CS-injured mitochondria. These observed effects were echoed in the mice with enhanced mitophagy. Therapeutically, we demonstrated abolishing GSDMD-dependent pyroptosis by disulfiram attenuated CS-induced silicosis. Collectively, our data demonstrated that macrophage pyroptosis interacting with mitophagy contributes to pulmonary fibrosis via modulating mitochondria homeostasis, which may provide potential therapeutic targets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。