Perfluorooctane sulfonic acid modulates expression of placental steroidogenesis-associated genes and hormone levels in pregnant rats

全氟辛烷磺酸调节妊娠大鼠胎盘类固醇生成相关基因表达和激素水平

阅读:8
作者:Sri Vidya Dangudubiyyam, Jay S Mishra, Sathish Kumar

Abstract

Perfluorooctane sulfonate (PFOS) is a widespread and persistent chemical in the environment. Reports show that PFOS is a potential endocrine disruptor; however, the possible effects of PFOS on placental endocrine function are unclear. This study aimed to investigate the endocrine-disrupting effects of PFOS on the placenta in pregnant rats and its potential mechanism. Pregnant rats from gestational days 4-20 were exposed to 0, 10, and 50 μg/mL PFOS through drinking water followed by analysis of various biochemical parameters. PFOS dose-dependently decreased fetal and placental weight in both sexes, with a specific decrease in weight of labyrinth but not junctional layer. Plasma progesterone (↑166%), aldosterone (↑201%), corticosterone (↑205%), testosterone (↑45%), luteinizing hormone (↑49%) levels were significantly increased, while estradiol (↓27%), prolactin (↓28%) and hCG (↓62%) levels were reduced in groups exposed to higher doses of PFOS. Real-time quantitative reverse transcriptase-polymerase chain reaction analysis revealed a significant increase in mRNA levels of placental steroid biosynthesis enzymes, including Cyp11A1 and 3β-HSD1 in male placenta and StAR, Cyp11A1, 17β-HSD1 and 17β-HSD3 in female placenta of PFOS dams. Cyp19A1 expression in ovaries was significantly decreased in PFOS dams. mRNA levels for placental steroid metabolism enzyme UGT1A1 increased in male but not in female placenta of PFOS dams. These results suggest that the placenta is a target tissue of PFOS and PFOS-induced dysregulation in steroid hormone production might be related to the altered expression of hormone biosynthesis and metabolism enzyme genes in the placenta. This hormone disruption might affect maternal health and fetal growth.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。