Conclusions/interpretation
CD226 blockade reduces T cell cytotoxicity and improves Treg function, representing a targeted and rational approach for restoring immune regulation in type 1 diabetes.
Methods
Female NOD mice were treated with anti-CD226 between 7-8 weeks of age and then monitored for diabetes incidence and therapeutic mechanism of action.
Results
Compared to isotype-treated controls, anti-CD226 treated NOD mice showed reduced insulitis severity at 12 weeks and decreased disease incidence at 30 weeks. Flow cytometric analysis performed five weeks post-treatment demonstrated reduced proliferation of CD4+ and CD8+ effector memory T cells in spleens of anti-CD226 treated mice. Phenotyping of pancreatic Tregs revealed increased CD25 expression and STAT5 phosphorylation following anti-CD226, with splenic Tregs displaying augmented suppression of CD4+ T cell responders in vitro. Anti-CD226 treated mice exhibited reduced frequencies of islet-specific glucose-6-phosphatase catalytic subunit related protein (IGRP)-reactive CD8+ T cells in the pancreas, using both ex vivo tetramer staining and single-cell T cell receptor sequencing (scTCR-seq) approaches. 51Cr-release assays demonstrated reduced cell-mediated lysis of beta-cells by anti-CD226-treated autoreactive cytotoxic T lymphocytes. Conclusions/interpretation: CD226 blockade reduces T cell cytotoxicity and improves Treg function, representing a targeted and rational approach for restoring immune regulation in type 1 diabetes.
