Clustering of plaques contributes to plaque growth in a mouse model of Alzheimer's disease

斑块聚集导致阿尔茨海默病小鼠模型中的斑块生长

阅读:5
作者:Joanna F McCarter, Sabine Liebscher, Teresa Bachhuber, Claudia Abou-Ajram, Mark Hübener, Bradley T Hyman, Christian Haass, Melanie Meyer-Luehmann

Abstract

Amyloid-β (Aβ) plaque deposition plays a central role in the pathogenesis of Alzheimer's disease (AD). Post-mortem analysis of plaque development in mouse models of AD revealed that plaques are initially small, but then increase in size and become more numerous with age. There is evidence that plaques can grow uniformly over time; however, a complementary hypothesis of plaque development is that small plaques cluster and grow together thereby forming larger plaques. To investigate the latter hypothesis, we studied plaque formation in APPPS1 mice using in vivo two-photon microscopy and immunohistochemical analysis. We used sequential pre- and post-mortem staining techniques to label plaques at different stages of development and to detect newly emerged plaques. Post-mortem analysis revealed that a subset (22 %) of newly formed plaques appeared very close (<40 μm) to pre-existing plaques and that many close plaques (25 %) that were initially separate merged over time to form one single large plaque. Our results suggest that small plaques can cluster together, thus forming larger plaques as a complementary mechanism to simple uniform plaque growth from a single initial plaque. This study deepens our understanding of Aβ deposition and demonstrates that there are multiple mechanisms at play in plaque development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。