Circulating exosomal miR-21 mediates HUVEC proliferation and migration through PTEN/PI3K/AKT in Crohn's disease

循环外泌体 miR-21 通过克罗恩病中的 PTEN/PI3K/AKT 介导 HUVEC 增殖和迁移

阅读:4
作者:Xiaoran Xie, Peng Qu, Hao Wu, Peng Liu, Ju Luo, Jingshu Chi, Xiaoming Liu, Xiong Chen, Canxia Xu

Background

Angiogenesis and vascular dysfunction play important roles in the occurrence and development of Crohn's disease (CD), but relevant mechanistic research is lacking. This paper aimed to use exosomal technology to elucidate the mechanism of vascular abnormalities in CD.

Conclusions

Circulating exosomal miR-21 mediates HUVEC proliferation and migration through PTEN/PI3K/AKT in CD. Exosomal miR-21 may be a new biomarker or therapeutic target for the treatment of vascular abnormalities in CD.

Methods

Ultra-high-speed centrifugation was used to extract circulating exosomes. Electron microscopy, particle size, and biomarker detection were used for exome quality control. MicroRNA 21 (miR-21) levels were determined by quantitative polymerase chain reaction (qPCR). Migration abilities and tubule-forming capacity were assessed by wound healing assay, transwell invasion test, and tube formation assay. Exosome biomarkers and pathway protein levels were determined by western blotting.

Results

Our data revealed that the circulating exosomes of patients with CD have a remarkable effect on the proliferation and migration of human umbilical vein endothelial cells (HUVECs), and that exosomal miR-21 levels were highly elevated in exosomes derived from the plasma of CD patients. Exosomes derived from CD patients and miR-21 mimic had more powerful migration abilities and tubule-forming capacity than control groups. miR-21 inhibitors significantly blocked the quick migration and tubule formation of HUVECs induced by CD-exosomes. Western blot analysis revealed that circulating exosome miR-21 in HUVECs might weaken negative regulation of phosphoinositide 3-kinase (PI3K)/AKT serine/threonine kinase (AKT) by target-inhibiting phosphatase and tensin homolog (PTEN) and inducing the expression of hypoxia-inducible factor 1-alpha (HIF-1α) and vascular endothelial growth factor (VEGF). Conclusions: Circulating exosomal miR-21 mediates HUVEC proliferation and migration through PTEN/PI3K/AKT in CD. Exosomal miR-21 may be a new biomarker or therapeutic target for the treatment of vascular abnormalities in CD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。