Chemopreventive efficacy of salvianolic acid B phospholipid complex loaded nanoparticles against experimental oral carcinogenesis: implication of sustained drug release

载丹酚酸 B 磷脂复合物纳米粒子对实验性口腔致癌作用的化学预防作用:持续药物释放的含义

阅读:4
作者:Wei Liu, Zengtong Zhou, Laikuan Zhu, Hongquan Li, Lan Wu

Background

Although we have previously demonstrated that phospholipid complex loaded nanoparticles (PLC-NPs) encapsulating salvianolic acid B (SAB) can enhance anticancer activity in head and neck cancer and precancerous cells in vitro, the chemopreventive efficacy of SAB-PLC-NPs (nano-SAB) in vivo remains unclear. Here, we aimed to investigate the in vivo efficacy of nano-SAB against experimental oral carcinogenesis.

Conclusions

Together with our previous in vitro data, this in vivo study confirms that nano-SAB has superior chemopreventive efficacy by promoting more potent anti-proliferation and cell cycle arrest responses. These findings demonstrate the potential of SAB-PLC-NPs as promising chemopreventive agents for treating oral carcinogenesis.

Methods

Oral tongue carcinogenesis was induced in C57BL/6 mice through the administration of 4-nitroquinoline-N-oxide (4NQO, 100 µg/mL) in drinking water for 22 weeks. To preliminarily evaluate the effect of sustained drug release against oral carcinogenesis, free- or nano-SAB (16.6 mg/kg/d) was administered orally for 18 weeks, and the treatment was discontinued for the remaining 4 weeks.

Results

Histological evaluation revealed a significant (P<0.05) decrease in the incidence of carcinoma in free-SAB-treated (16.7%) and nano-SAB-treated (10.0%) mice compared to mice exposed to 4NQO alone (34.3%). A decrease in carcinoma growth rate was also observed in free-SAB-treated (12.2%) and nano-SAB-treated (5.5%) mice compared to the 4NQO-exposed group (18.3%), even after drug withdrawal for 4 weeks. Immunohistochemical analysis revealed that nano-SAB treatment effectively suppressed Ki-67, proliferative cell nuclear antigen (PCNA), and cyclin D1 expression in high-risk dysplastic lesions compared to free-SAB-treated and 4NQO-exposed groups (all P<0.05). Importantly, nano-SAB maintained low levels of Ki-67, PCNA, and cyclin D1 expression even after drug withdrawal for 4 weeks. Conclusions: Together with our previous in vitro data, this in vivo study confirms that nano-SAB has superior chemopreventive efficacy by promoting more potent anti-proliferation and cell cycle arrest responses. These findings demonstrate the potential of SAB-PLC-NPs as promising chemopreventive agents for treating oral carcinogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。