The Amuvatinib Derivative, N-(2H-1,3-Benzodioxol-5-yl)-4-{thieno[3,2-d]pyrimidin-4-yl}piperazine-1-carboxamide, Inhibits Mitochondria and Kills Tumor Cells under Glucose Starvation

Amuvatinib 衍生物 N-(2H-1,3-苯并二氧杂环戊烯-5-基)-4-{噻吩并[3,2-d]嘧啶-4-基}哌嗪-1-甲酰胺,在葡萄糖饥饿条件下抑制线粒体并杀死肿瘤细胞

阅读:7
作者:Ran Marciano, Hila Ben David, Barak Akabayov, Barak Rotblat

Abstract

Glucose levels inside solid tumors are low as compared with normal surrounding tissue, forcing tumor cells to reprogram their metabolism to adapt to such low glucose conditions. Unlike normal tissue, tumor cells experience glucose starvation, making the targeting of pathways supporting survival during glucose starvation an interesting therapeutic strategy in oncology. Using high-throughput screening, we previously identified small molecules that selectively kill cells exposed to glucose starvation. One of the identified compounds was the kinase inhibitor amuvatinib. To identify new molecules with potential antineoplastic activity, we procured 12 amuvatinib derivatives and tested their selective toxicity towards glucose-starved tumor cells. One of the amuvatinib derivatives, N-(2H-1,3-benzodioxol-5-yl)-4-{thieno[3,2-d]pyrimidin-4-yl}piperazine-1-carboxamide, termed compound 6, was found to be efficacious in tumor cells experiencing glucose starvation. In line with the known dependence of glucose-starved cells on the mitochondria, compound 6 inhibits mitochondrial membrane potential. These findings support the concept that tumor cells are dependent on mitochondria under glucose starvation, and bring forth compound 6 as a new molecule with potential antitumor activity for the treatment of glucose-starved tumors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。