Transient Inhibition of Trastuzumab-Tumor Binding to Overcome the "Binding-Site Barrier" and Improve the Efficacy of a Trastuzumab-Gelonin Immunotoxin

暂时抑制曲妥珠单抗与肿瘤的结合以克服“结合位点障碍”并提高曲妥珠单抗-Gelonin 免疫毒素的疗效

阅读:6
作者:Ping Chen, Brandon M Bordeau, Yu Zhang, Joseph P Balthasar

Abstract

We have recently shown that coadministration of mAbs with anti-idiotypic distribution enhancers (AIDE) that inhibit mAb binding to tumor antigens enabled increased intratumoral mAb distribution and increased efficacy of an antibody-drug conjugate (trastuzumab emtansine, T-DM1). In this article, a pharmacokinetic/pharmacodynamic (PK/PD) model was applied to predict the impact of this optimization strategy on the within-tumor distribution and antitumor efficacy of trastuzumab-gelonin, where the released payload (gelonin) is expected to exhibit negligible bystander activity. Immunofluorescence histology was used to investigate trastuzumab-gelonin distribution in solid tumors following dosing with or without coadministration of anti-trastuzumab AIDEs. Antitumor efficacy of trastuzumab-gelonin, with or without coadministration of AIDEs, was also evaluated in tumor-bearing mice. Trastuzumab-gelonin efficiently induced cytotoxicity when applied to NCI-N87 cells in culture (IC50: 0.224 ± 0.079 nmol/L). PK/PD simulations predicted that anti-idiotypic single-domain antibodies AIDEs with dissociation rate constants between 0.03 and 0.2 per hour would provide optimal enhancement of trastuzumab-gelonin efficacy. LE8 and 1HE, anti-trastuzumab AIDEs, were selected for evaluation in vivo. Coadministration of trastuzumab-gelonin with the inhibitors increased the portion of tumor area that stained positive for trastuzumab-gelonin by 58% (P = 0.0059). In addition, LE8 or 1HE coadministration improved trastuzumab-gelonin efficacy in NCI-N87 xenograft-bearing mice by increasing the percent increase in life span (%ILS) from 27.8% (for trastuzumab-gelonin administered alone) to 62.5% when administered with LE8 (P = 0.0007) or 83.3% (P = 0.0007) when administered with 1HE. These findings support the hypothesis that transient, competitive inhibition of mAb-tumor binding can improve the intratumoral distribution and efficacy of immunotoxins when applied for treatment of solid tumors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。