Conclusion
This discovery revealed the specific mechanism of ferroptosis induced by apatinib combined with olaparib in p53 wild-type ovarian cancer cells and provided a theoretical basis for the clinical combined use of apatinib and olaparib in p53 wild-type ovarian cancer patients.
Methods
In this study, human ovarian cancer cell lines A2780 and OVCAR3 were used as experimental objects, and the expression of ferroptosis-related protein GPX4 after treatment with apatinib and olaparib was detected by Western blot. The SuperPred database was used to predict the target of the combined action of apatinib and olaparib, and the predicted
Objective
PARP inhibitors combined with antiangiogenic drugs have been reported to improve outcomes in BRCA wild-type ovarian cancer patients, the mechanism of the combination is unclear. In this study, we explored the mechanism of apatinib combined with olaparib in the treatment of ovarian cancer.
Results
Apatinib combined with olaparib-induced ferroptosis in p53 wild-type cells, and p53 mutant cells developed drug resistance. The p53 activator RITA sensitized drug-resistant cells to ferroptosis induced by apatinib combined with olaparib. Apatinib combined with olaparib-induced ferroptosis via a p53-dependent manner in ovarian cancer. Further studies showed that apatinib combined with olaparib-induced ferroptosis by inhibiting the expression of Nrf2 and autophagy, thereby inhibiting the expression of GPX4. The Nrf2 activator RTA408 and the autophagy activator rapamycin rescued the combination drug-induced ferroptosis.
