Staufen1 in Human Neurodegeneration

Staufen1 在人类神经退行性疾病中的作用

阅读:4
作者:Sharan Paul, Warunee Dansithong, Karla P Figueroa, Mandi Gandelman, Daniel R Scoles, Stefan M Pulst

Methods

With multiple neurodegenerative patient-derived cell models, animal models, and human postmortem ALS tissue, we evaluate STAU1 function using biochemical and immunohistological analyses.

Objective

Mutations in the ATXN2 gene (CAG expansions ≥32 repeats) can be a rare cause of Parkinson's disease and amyotrophic lateral sclerosis (ALS). We recently reported that the stress granule (SG) protein Staufen1 (STAU1) was overabundant in neurodegenerative disorder spinocerebellar ataxia type 2 (SCA2) patient cells, animal models, and ALS-TDP-43 fibroblasts, and provided a link between SG formation and autophagy. We aimed to test if STAU1 overabundance has a role in the pathogenesis of other neurodegenerative diseases.

Results

We demonstrate STAU1 overabundance and increased total and phosphorylated mammalian target of rapamycin (mTOR) in fibroblast cells from patients with ALS with mutations in TDP-43, patients with dementia with PSEN1 mutations, a patient with parkinsonism with MAPT mutation, Huntington's disease (HD) mutations, and SCA2 mutations. Increased STAU1 levels and mTOR activity were seen in human ALS spinal cord tissues as well as in animal models. Changes in STAU1 and mTOR protein levels were post-transcriptional. Exogenous expression of STAU1 in wildtype cells was sufficient to activate mTOR and downstream targets and form SGs. Targeting STAU1 by RNAi normalized mTOR, suggesting a potential role for therapy in diseases associated with STAU1 overabundance. Interpretation: STAU1 overabundance in neurodegeneration is a common phenomenon associated with hyperactive mTOR. Targeting STAU1 with ASOs or miRNA viral vectors may represent a novel, efficacious therapy for neurodegenerative diseases characterized by overabundant STAU1. ANN NEUROL 2021;89:1114-1128.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。