The upstream 5' splice site remains associated to the transcription machinery during intron synthesis

在内含子合成过程中,上游 5’ 剪接位点仍然与转录机制相关

阅读:4
作者:Yodfat Leader #, Galit Lev Maor #, Matan Sorek #, Ronna Shayevitch, Maram Hussein, Ofir Hameiri, Luna Tammer, Jonathan Zonszain, Ifat Keydar, Dror Hollander, Eran Meshorer, Gil Ast

Abstract

In the earliest step of spliceosome assembly, the two splice sites flanking an intron are brought into proximity by U1 snRNP and U2AF along with other proteins. The mechanism that facilitates this intron looping is poorly understood. Using a CRISPR interference-based approach to halt RNA polymerase II transcription in the middle of introns in human cells, we discovered that the nascent 5' splice site base pairs with a U1 snRNA that is tethered to RNA polymerase II during intron synthesis. This association functionally corresponds with splicing outcome, involves bona fide 5' splice sites and cryptic intronic sites, and occurs transcriptome-wide. Overall, our findings reveal that the upstream 5' splice sites remain attached to the transcriptional machinery during intron synthesis and are thus brought into proximity of the 3' splice sites; potentially mediating the rapid splicing of long introns.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。