A network-based analysis and experimental validation of traditional Chinese medicine Yuanhu Zhitong Formula in treating neuropathic pain

中药元胡止痛方治疗神经性疼痛的网络分析及实验验证

阅读:7
作者:Tongtong Liu, Ting Li, Xuhui Chen, Kaiwen Zhang, Meihong Li, Wenlong Yao, Chuanhan Zhang, Li Wan

Aim of the study

This study aimed to explore the potential mechanism underlying YZF on nociception of rats. Also, the comprehensive mechanism of YZF was preliminarily determined based on network pharmacology on neuropathic pain. Materials and

Conclusions

This study revealed that YZF modulates the nociceptive behavior in SNI rats. Moreover, the drug may be useful in the treatment of neuropathic pain through multi-components, multi-targets, and multi-pathways. Nevertheless, more attention should be paid to discriminating the potential ingredients in YZF contributing to its analgesic effects in the treatment of neuropathic pain.

Methods

A spared nerve injury (SNI) model was established to reveal the effects of YZF administration on nociceptive behavior in rats. Von-Frey tests were used to evaluate the paw withdrawal mechanical thresholds in rats administrated with YZF or vehicle. The "drug-ingredients" and "disease-drug-target" networks were established with a network pharmacology approach. The analyses of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) profiles were performed based on the common targets between the herbs and neuropathic pain. Hub genes, identified with CytoHubba, were validated by Western blotting analysis.

Results

SNI rats developed significant nociceptive behavior as soon as 3 days after nerve injury, which was reversed by consecutive treatment with 300 mg/kg YZF for 7 days. Besides, 50 potential bioactive components in YZF with 1074 targets were identified. Then, 217 putative common genes related to YZF and neuropathic pain were identified for further study. After established a protein-protein interaction network, 12 subnetworks with CytoHubba and 10 predictive hub genes were obtained based on the maximal clique centrality model. Western blotting analysis indicated that SNI rats exhibited increased APP (Amyloid-beta precursor protein), SRC (Proto-oncogene tyrosine-protein kinase Src), and phosphorylation of JNK1 (Mitogen-activated protein kinase 8, JNK) and ERK1/2 (Mitogen-activated protein kinase 3/1). Obviously, continuous administration of YZF robustly reversed such changes. Conclusions: This study revealed that YZF modulates the nociceptive behavior in SNI rats. Moreover, the drug may be useful in the treatment of neuropathic pain through multi-components, multi-targets, and multi-pathways. Nevertheless, more attention should be paid to discriminating the potential ingredients in YZF contributing to its analgesic effects in the treatment of neuropathic pain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。