Thermodynamics Affecting Glacier-Released 4-Nonylphenol Deposition in Alaska, USA

影响美国阿拉斯加冰川释放的 4-壬基酚沉积的热力学

阅读:11
作者:Rebecca Lyons, Shaun Weatherly, Jason Waters, Jim Bentley

Abstract

Glaciers have recently been recognized as a secondary source of organic pollutants. As glacier melt rates increase, downstream ecosystems are at increasing risk of exposure to these pollutants. Nonylphenols (NPs) are well-documented anthropogenic persistent pollutants whose environmental prevalence and ecotoxicity make them of immediate concern to the health of humans and wildlife populations. As glacier melt increases, transport of NPs to downstream environments will also increase. Snow, ice, meltwater, and till for five glaciers in the Chugach National Forest and Kenai Fjords National Park, Alaska, USA, were investigated for the presence of 4-nonylphenol (4NP). Average concentrations for snow, ice, meltwater, and glacial till were 0.77 ± .017 µg/L snow water, 0.75 ± .006 µg/L, 0.26 ± .053 µg/L, and 0.016 ± .004 µg/g, respectively. All samples showed the presence of 4NP. Deposition of 4NP downstream from glaciers will depend more on the ionic strength of the water than organic carbon to drive partitioning and deposition. Laboratory studies of partition coefficients showed that ionic strength contributed 59% of the driving force behind partitioning, while organic carbon contributed 36%. Evidence was found for interaction between organic carbon and the aqueous phase. The 4NP Setschenow constants (Ks ) were determined for particle types with varying percentages of organic carbon. Values of Ks increased with the percentage of organic carbon. These relationships will shape further studies of 4NP deposition into the environment downstream of glacier outflow. Environ Toxicol Chem 2022;41:1623-1636. © The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。