Torpor-arousal cycles in Syrian hamster heart are associated with transient activation of the protein quality control system

叙利亚仓鼠心脏的麻木-觉醒周期与蛋白质质量控制系统的瞬时激活有关

阅读:8
作者:Marit Wiersma, Thais M A Beuren, Edwin L de Vrij, Vera A Reitsema, Jantje J Bruintjes, Hjalmar R Bouma, Bianca J J M Brundel, Robert H Henning

Abstract

Hibernation consists of torpor, with marked suppression of metabolism and physiological functions, alternated with arousal periods featuring their full restoration. The heart is particularly challenged, exemplified by its rate reduction from 400 to 5-10 beats per minute during torpor in Syrian hamsters. In addition, during arousals, the heart needs to accommodate the very rapid return to normal function, which lead to our hypothesis that cardiac function during hibernation is supported by maintenance of protein homeostasis through adaptations in the protein quality control (PQC) system. Hereto, we examined autophagy, the endoplasmic reticulum (ER) unfolded protein (UPRER) response and the heat shock response (HSR) in Syrian hamster hearts during torpor and arousal. Transition from torpor to arousal (1.5 h) was associated with stimulation of the PQC system during early arousal, demonstrated by induction of autophagosomes, as shown by an increase in LC3B-II protein abundance, likely related to the activation of the UPRER during late torpor in response to proteotoxic stress. The HSR was not activated during torpor or arousal. Our results demonstrate activation of the cardiac PQC system - particularly autophagosomal degradation - in early arousal in response to cardiac stress, to clear excess aberrant or damaged proteins, being gradually formed during the torpor bout and/or the rapid increase in heart rate during the transition from torpor to arousal. This mechanism may enable the large gain in cardiac function during the transition from torpor to arousal, which may hold promise to further understand 'hibernation' of cardiomyocytes in human heart disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。