miR-363-3p/PTEN is involved in the regulation of lipid metabolism by genistein in HepG2 cells via ERβ

miR-363-3p/PTEN通过ERβ参与染料木黄酮对HepG2细胞脂质代谢的调控

阅读:5
作者:Hong Qin, Ziyu Song, Chunyu Zhao, Sha Li, Anwar Ali, Wenya Zheng

Background

Genistein (GEN) is one of the most well-known phytoestrogens identified in various legumes. Although increasing evidence shows GEN has a potential use in phytotherapy to regulate lipid metabolism, its therapeutic mechanisms have not yet been completely elucidated, especially epigenetic alterations of miRNAs to alleviate lipid accumulation in the liver remains unknown.

Conclusion

We discerned a new mechanism that GEN regulated hepatic lipid metabolism by inhibiting miR-363-3p, which could be mediated via ERβ and by targeting PTEN in HepG2 cells. Additionally, GEN reduced hepatic lipid accumulation by regulating PTEN-AKT/mTOR signal. It implicated a protective role of GEN by elucidating its epigenetic modification of the miRNA modulated by ERβ on improving hepatic lipid metabolism and provided novel evidence of the mechanism on targeting miR-363-3p/PTEN in treating hepatic lipid disorders.

Methods

The miRNA microarray was performed to compare the miRNAs expression patterns, followed by determining principal miRNA and its target gene associated with hepatic lipid metabolism modulated by GEN. miR-363-3p mimics (mi) and phosphatase and tensin homolog (PTEN)-siRNA were transfected into HepG2 cells and GEN was further treated with the cells for 24 h

Purpose

To clarify how GEN modulates the miRNA profile in HepG2 cells and investigate molecular mechanisms of the modulated miRNA on regulating hepatic lipid metabolism.

Results

GEN induced downregulation of miR-363-3p and upregulation of PTEN, which was a target mRNA of miR-363-3p. The miR-363-3p mi led to an upregulation of sterol-regulatory element-binding protein-1c (SREBP-1c) and its downstream lipid synthesis-related factors in HepG2 cells. In addition, the inhibition of PTEN led to an increase of lipogenesis, which was associated with the AKT/mTOR signal regulation. However, GEN treatment could abrogate the lipogenic effects of miR-363-3p mi or PTEN siRNA. The modulation was associated with estrogen receptor β (ERβ).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。