Jasminoidin and ursodeoxycholic acid exert synergistic effect against cerebral ischemia-reperfusion injury via Dectin-1-induced NF-κB activation pathway

栀子苷和熊去氧胆酸通过Dectin-1诱导NF-κB活化通路协同抗脑缺血再灌注损伤

阅读:4
作者:Dan-Li Hao, Ran Xie, Yi-Lin Zhong, Jia-Meng Li, Qing-He Zhao, Hai-Ru Huo, Xing-Jiang Xiong, Feng Sui, Peng-Qian Wang

Background

Jasminoidin (JA) and ursodeoxycholic acid (UA) were shown to act synergistically against ischemic stroke (IS) in our previous studies.

Conclusions

JA and UA can synergistically protect cerebral ischemia-reperfusion injury by attenuating Dectin-1-induced NF-κB activation. The strategy integrating high throughput data with computational models enables ever-finer mapping of 'long-tail' drugs to dynamic variations in condition-specific omics to clarify synergistic mechanisms.

Methods

Middle cerebral artery obstruction reperfusion (MCAO/R) mice were used to evaluate the efficacy of JA, UA, and JA combined with UA (JU) using neurological function testing and infarct volume examination. High-throughput RNA-seq combined with computational prediction and function-integrated analysis was conducted to gain insight into the comprehensive mechanism of synergy. The core mechanism was validated using western blotting.

Purpose

To investigate the holistic synergistic mechanism of JA and UA on cerebral ischemia.

Results

JA and UA synergistically reduced cerebral infarct volume and alleviated neurological deficits and pathological changes in MCAO/R mice. A total of 1437, 396, 1080, and 987 differentially expressed genes were identified in the vehicle, JA, UA, and JU groups, respectively. A strong synergistic effect between JA and UA was predicted using chemical similarity analysis, target profile comparison, and semantic similarity analysis. As the 'long-tail' drugs, the top 20 gene ontology (GO) biological processes of JA, UA, and JU groups primarily reflected inflammatory response and regulation of cytokine production, with specific GO terms of JU revealing enhanced regulation on immune response and tumor necrosis factor superfamily cytokine production. Comparably, the Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling of common targets of JA, UA, and JU focused on extracellular matrix organization and signaling by interleukins, immune system, phagosomes, and lysosomes, which interlock and interweave to produce the synergistic effects of JU. The characteristic signaling pathway identified for JU highlighted the crosstalk between autophagy activation and inflammatory pathways, especially the Dectin-1-induced NF-κB activation pathway, which was validated by in vivo experiments. Conclusions: JA and UA can synergistically protect cerebral ischemia-reperfusion injury by attenuating Dectin-1-induced NF-κB activation. The strategy integrating high throughput data with computational models enables ever-finer mapping of 'long-tail' drugs to dynamic variations in condition-specific omics to clarify synergistic mechanisms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。