Conclusions
As a result, no evidence of recent bioturbation could be inferred from the faunal remains of these archaeological deposits. More importantly this work presents a method for high-throughput screening of specific taxa and is the first application of collagen fingerprinting to microfaunal remains of archaeological specimens.
Methods
Collagen was extracted from complete microfaunal skeletal remains in such a manner as to leave the bones morphologically intact (i.e., weaker concentration of acid than previously used over shorter length of time). Acid-soluble collagen was then ultrafiltered into ammonium bicarbonate and digested with trypsin prior to dilution in the MALDI matrix and acquisition of peptide mass fingerprints using a matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometer.
Results
Collagen fingerprinting was able to distinguish between Rattus, Mus, Apodemus and Micromys at the genus level; at the species level, R. rattus and R. norvegicus could be separated whereas A. flavicollis and A. sylvaticus could not. A total of 12,317 archaeological microvertebrate samples were screened for myomorph signatures but none were found to be invasive rats (Rattus) or mice (Mus). Of the contemporary murine fauna, no harvest mice (Micromys) were identified and only 24 field mouse (Apodemus) discovered. Conclusions: As a result, no evidence of recent bioturbation could be inferred from the faunal remains of these archaeological deposits. More importantly this work presents a method for high-throughput screening of specific taxa and is the first application of collagen fingerprinting to microfaunal remains of archaeological specimens.
